ตรีโกณมิติ

ตรีโกณมิติ

    ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม

ตรีโกณมิติ คือ – คณิตศาสตร์แขนงหนึ่งที่ว่าด้วยการคำนวนมุมของสามเหลี่ยม

ความเป็นมา
เมื่อ 640-546 ปี ก่อนคริสต์ศักราช ทาเรส (thales)คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหนึ่งที่ทาเรสใช้คือ คำนวณความสูงของพีรามิดจากความยาวของเงาของพีรามิด ในขณะที่เงาของเขามีความยาวเท่ากับความสูงของเขาเอง อีกวิธีหนึ่งที่ทาเรสใช้คำนวณ ความสูงของพีรามิดคือ การเปรียบเทียบความยาวของเงาของพีรามิดกับความยาวของเงาของไม้(ไม้ที่ทราบความยาว ถ้าสมัยนี้ก็คือไม้เมตรนั่นเอง) โดยอาศัยรูปสามเหลี่ยมคล้าย ซึ่งก็คือ อัตราส่วนตรีโกณมิติที่เรียกว่า แทนเจนต์ (tangent) นั่นเอง

โดยวิธีจำเช่นนี้

ภาพ:sincostan.jpg

ภาพประกอบจาก : คณิตดอทคอม

ตารางค่าของฟังก์ชันตรีโกณมิติของมุมที่ควรทราบ             

ทำความเข้าใจเพิ่มเติ่มได้ที่นี้ :’)

http://www.tlcthai.com/education/knowledge-online/content-edu/16119.html

ความหมายของคณิตศาสตร์

ความหมายของคณิตศาสตร์

“คณิต” หมายถึง  การนับ การคำนวณ วิชาคำนวณ การประมาณ
“คณิตศาสตร์”  หมายถึง วิชาว่าด้วยการคำนวณหรือตำรา

คณิตศาสตร์ เป็นวิชาที่มีความจำเป็นในการประกอบอาชีพเช่น ด้านกสิกรรม อุตสาหกรรมและพาณิชย- กรรม  ผู้มีอาชีพเป็นสถานปนิก วิศวกรออกแบบ และควบคุมการก่อนสร้าง นักวิทยาศาสตร์คิดค้นสิ่งแปลก ใหม่ นักเศรษฐศาสตร์มีความจำเป็นที่จะต้องมีความรู้ ความสามารถ เกี่ยวกับคณิตศาตร์ หรือตัวเลขต่าง ๆ ในการปรกอบกิจกรรมนั้น ๆ

ประวัติความเป็นมาและพัฒนาการของคณิตศาสตร์

คณิตศาสตร์มีประวัติความเป็นมาน่าสนใจ จะได้นำมากล่าวไว้พอเป็นสังเขป ดังนี้

             สมัยบาบิโลนและอียิปต์ 

ในสมัย 5,000  ปีมาแล้ว ชาวบาบิโลน (อยู่ในประเทศอิรักทุกวันนี้) และชาวอียิปต์รู้จักเขียนสัญลักษณ์แทนจำนวน รู้จักเลข เศษส่วน รู้จักใช้ลูกคิดบวก ลบ คูณ หารตัวเลข ความรู้เกี่ยวกับจำนวนได้นำมาใช้ในการติดต่อค้าขาย การเก็บภาษี การรู้จักทำปฏิทิน และการรู้จักใช้มาตรฐานเกี่ยวกับเวลา เช่น 1 ปีมี 365 วัน 1 วันมี 24 ชั่วโมง 1 ชั่วโมงมี 60 นาที  1 นาทีมี 60 วินาที ความรู้ทางเรขาคณิต เช่น การวัดระยะทาง การวัดมุม นำมาใช้ในการก่อสร้างและการรังวัดที่ดิน เขาสนใจคณิตศาสตร์ในด้านนำไปใช้ให้เป็นประโยชน์ได้เท่านั้น

             สมัยกรีกและโรมัน 

ในสมัย 2,600 ปีถึง 2,300 ปีที่แล้ว ชาวกรีกได้รับความรู้ทางคณิตศาสตร์จากชาวอียิปต์และชาวบาบิโลน ชาวกรีกเป็นนักคิดชอบการใช้เหตุผล เขาเห็นว่าคณิตศาสตร์ไม่เป็นแต่เพียงเกร็ดความรู้ที่ใช้ให้เป็นประโยชน์ได้เท่านั้น เขาจึงได้วางกฎเกณฑ์ทำให้คณิตศาสตร์กลายเป็นวิชาที่มีเหตุผล มีการพิสูจน์ให้เห็นจริง เป็นวิชาที่น่ารู้ไว้เพิ่มพูนสติปัญญา นักคณิตศาสตร์ที่สำคัญในสมัยนี้  คือ
เธลีส (Thales ประมาณ 640-546 ปีก่อนคริสต์ศักราช) เป็นนักปรัชญา นักคณิตศาสตร์  นักดาราศาสตร์ชาวกรีก  เป็นคนแรกที่คำนวณหาความสูงของพีระมิดในอียิปต์โดยใช้เงา เขาได้ทำนายว่าจะเกิดสุริยคราสล่วงหน้าซึ่งได้เกิดขึ้นก่อนพุทธศักราช 42 ปี รู้จักพิสูจน์ทฤษฎีบททางเรขาคณิต เช่น เส้นผ่านศูนย์กลางจะแบ่งครึ่งวงกลม  มุมที่ฐานของรูปสามเหลี่ยมหน้าจั่วเท่ากัน และมุมในครึ่งวงกลมเป็นมุมฉาก เป็นต้น

ปีทาโกรัส (Pythagoras ประมาณ 580-496 ปี ก่อนคริสต์ศักราช) นักคณิตศาสตร์ชาวกรีกเป็นผู้ริเริ่มตั้งโรงเรียนสอนวิชาคณิตศาสตร์และปรัชญา ปีทาโกรัสและศิษย์สนใจเรื่องราวของจำนวนมาก เขาคิดว่าวิชาการต่างๆ และการงานแทบทุกชนิดของมนุษย์จะต้องมีจำนวนเข้ามาเกี่ยวข้องอยู่ด้วยเสมอ การเรียนรู้เรื่องของจำนวนก็คือการเรียนรู้เรื่องราวต่างๆ ของธรรมชาตินั่นเอง
ยูคลิด (Euclid ประมาณ 450-380 ปี ก่อนคริสต์ศักราช) นักคณิตศาสตร์ชาวกรีก ได้รวบรวมเรขาคณิตขึ้นเป็นตำราที่มีชื่อเสียงมาก เป็นการวางพื้นฐานการเรียนเรขาคณิตโดยกล่าวถึงจุด เส้นและรูป เช่น รูปสามเหลี่ยมและวงกลม    จากข้อความที่ยูคลิดถือว่าเป็นจริงแล้วประมาณ 10 ข้อความ เช่น “มีเส้นตรงเพียงเส้นเดียวเท่านั้นที่ลากผ่านจุดสองจุดได้” เป็นต้น อาศัยการใช้เหตุผล ยูคลิดพบทฤษฎีบท (ข้อความที่พิสูจน์ได้ว่าเป็นจริง) ถึง 465 ทฤษฎีบท ตำราของยูคลิดกล่าวถึงทฤษฎีบท และการพิสูจน์ทฤษฎีบทเหล่านี้ โดยเริ่มจากทฤษฎีบทที่ง่ายที่สุด และค่อยๆ ยากขึ้นเป็นลำดับ นอกจากนี้ยูคลิดยังได้ศึกษาเกี่ยวกับจำนวนอีกด้วย
อาร์คีมีดีส (Archimedes ประมาณ 287-212  ปี ก่อนคริสต์ศักราช) นักคณิตศาสตร์ นักฟิสิกส์ชาวกรีก สนใจการหาพื้นที่วงกลม ปริมาตรของทรงกระบอกและกรวย นักคณิตศาสตร์สมัยนี้รู้จักคำนวณอตรรกยะเช่น(พาย) และสามารถคำนวณค่าโดยประมาณได้โดยใช้เศษส่วน อาร์คีมีดีสพบว่า มีค่าประมาณ วิธีการหาค่า (นำไปสู่การค้นพบวิชาแคลคูลัส นอกจากนี้อาร์คีมีดีส เคยประดิษฐ์ระหัดทดน้ำ พบกฎการลอยตัวและกฎเกณฑ์ของคานงัด และได้นำไปใช้ในการสร้างเครื่องผ่อนแรงสำหรับยกของหนัก
ส่วนชาวโรมัน สนใจคณิตศาสตร์ในด้านนำไปใช้ในการก่อสร้าง ธุรกิจและการทหาร  ตัวเลขแบบโรมันเป็นดังนี้
เลขโรมัน             I   II   III   IV   V   VI   VII   VIII   IX    X    C
เลขฮินดูอารบิค     1   2    3    4    5   6     7      8      9   10   100

            สมัยกลาง 

(ประมาณ พ.ศ. 1072-1979) อาณาจักรโรมันเสื่อมสลายลงในปี พ.ศ. 1019 ชาวอาหรับรับการถ่ายทอดความรู้ทางคณิตศาสตร์จากกรีก ได้รับความรู้เรื่องจำนวนศูนย์ และวิธีเขียนตัวเลขแบบใหม่จากอินเดีย ตัวเลข 1 2 3 4 5 6 7 8 9 0  ที่เราใช้กันทุกวันนี้ จึงมีชื่อว่า ฮินดูอารบิค ชาวอาหรับแปลตำราภาษากรีกออกเป็นภาษาอาหรับไว้มากมาย ทั้งทางดาราศาสตร์  คณิตศาสตร์และแพทยศาสตร์

            สมัยฟื้นฟูศิลปวิทยา 

(ประมาณ พ.ศ. 1980-2143) สงครามครูเสดระหว่างชาวยุโรปกับชาวอาหรับ ซึ่งกินเวลาร่วม 300 ปี สิ้นสุดลง  ชาวยุโรปเริ่มฟื้นฟูทางการศึกษา และมีการก่อตั้งมหาวิทยาลัยกันขึ้น ชาวยุโรปได้ศึกษาวิชาคณิตศาสตร์จากตำราของชาวอาหรับ ในปี พ.ศ. 1983 คนรู้จักวิธีพิมพ์หนังสือ ไม่ต้องคัดลอกดังเช่นแต่ก่อน ตำราคณิตศาสตร์จึงแพร่หลายทั่วไป ชาวยุโรปแล่นเรือมาค้าขายกับอาหรับ อินเดีย ชวา และไทย ในปี  พ.ศ. 2035 คริสโตเฟอร์ โคลัมบัส (Christopher Columbus ประมาณ  ค.ศ. 1451-1506) นักเดินเรือชาวอิตาเลียนแล่นเรือไปพบทวีปอเมริกาใน พ.ศ. 2054 ชาวโปรตุเกสเข้ามาค้าขายในกรุงศรีอยุธยา การค้าขายเจริญรุ่งเรือง ชาวโลกสนใจคณิตศาสตร์มากขึ้นเพราะใช้เป็นประโยชน์ได้มากในการค้าขายและเดินเรือ เราพบตำราคณิตศาสตร์ภาษาเยอรมัน พิมพ์ใน พ.ศ. 2032 มีการใช้เครื่องหมาย +  และ –  ตำราคณิตศาสตร์ที่แพร่หลายมากคือตำราเกี่ยวกับเลขาคณิต อธิบายวิธีบวก ลบ  คูณ  หารจำนวนโดยไม่ต้องใช้ลูกคิด การหารยาวก็เริ่มต้นมาจากสมัยนี้ และยังคงใช้กันอยู่ตราบเท่าปัจจุบัน  นักดาราศาสตร์ใช้คณิตศาสตร์ในงานค้นคว้าเกี่ยวกับดวงดาวบนท้องฟ้า นิโคลัส คอเปอร์นิคัส (Nicolus Copernicus  ค.ศ. 1473-1543) นักดาราศาสตร์ผู้อ้างว่าโลกหมุนรอบดวงอาทิตย์เกิดในสมัยนี้

การเริ่มต้นของคณิตศาสตร์สมัยใหม่

(ประมาณ ค.ศ. 2144-2343) เริ่มต้นประมาณแผ่นดินสมเด็จพระนเรศวรมหาราช แห่งกรุงศรีอยุธยาจนถึงแผ่นดิน
สมเด็จพระพุทธยอดฟ้าจุฬาโลกมหาราช แห่งกรุงรัตนโกสินทร์

ในรอบสองร้อยปี ต่อมาความเจริญทางด้านดาราศาสตร์  การเดินเรือ การค้า การก่อสร้าง ทำให้จำเป็นต้องคิดเลขให้ได้เร็วและถูกต้อง ในปี พ.ศ. 2157 เนเปอร์ จอห์น เนเปียร์   (Neper John Napier ค.ศ. 1550-1617) นักคณิตศาสตร์ชาวสก็อตได้ตีพิมพ์ผลงานเกี่ยวกับลอการิทึม ซึ่งเป็นวิธีคูณ   หาร  และการยกกำลังจำนวนมากๆ ให้ได้ผลลัพธ์ถูกต้องและรวดเร็ว ในที่สุดก็มีการประดิษฐ์บรรทัดคำนวณขึ้นโดยใช้หลักเกณฑ์ของลอการิทึมนอกจากนี้ยังมีนักคณิตศาสตร์ที่สำคัญอีกคือ เรอเน เดส์การ์ตส์ (Rene Descartes  ค.ศ. 1596-1650) พบวิชาเรขาคณิตวิเคราะห์ แบลส ปาสกาล (Blaise Pascal ค.ศ. 1623-1662) และปิแยร์ เดอ แฟร์มาต์ (Pierre de Fermatค.ศ. 1601-1665) พบวิชาความน่าจะเป็น ทั้งสามท่านนี้เป็นชาวฝรั่งเศส ปาสกาลได้รับการยกย่องว่าเป็นคนแรกที่ประดิษฐ์เครื่องคิดเลข เซอร์ ไอแซกนิวตัน (Sir Isaac Newton  ค.ศ. 1642-1727) นักคณิตศาสตร์ นักวิทยาศาสตร์ชาวอังกฤษ และกอตต์ฟรีด วิลเฮล์ม ไลบ์นิตส์ (Gottfried  Wilhelm Leibnitz ค.ศ. 1646-1716  นักคณิตศาสตร์ชาวเยอรมัน) พบวิชาแคลคูลัส ซึ่งเป็นวิชาที่นำไปใช้ประโยชน์ได้อย่างกว้างขวาง การค้นพบวิชาแคลคูลัสในรัชสมัยสมเด็จพระนารายณ์มหาราช และการค้นพบกฎทางวิทยาศาสตร์ของนิวตัน เช่น กฎของการเคลื่อนที่ ทฤษฎีของการโน้มถ่วงของโลก เป็นต้น นับเป็นความก้าวหน้าของวิทยาการสมัยใหม่ ผลงานของนักคณิตศาสตร์และวิทยา- ศาสตร์ในสมัย 100 ปี ต่อมามุ่งไปในแนวใช้แคลคูลัสให้เป็นประโยชน์ในการศึกษาคณิตศาสตร์ และวิชาฟิสิกส์แขนงต่างๆ

นักคณิตศาสตร์ที่มีชื่อเสียงมากในสมัยนี้มี เลออนฮาร์ด ออยเลอร์ (Leonhard Euler  ค.ศ. 1707-1783) ชาวสวิสผู้ให้กำเนิดทฤษฎีว่าด้วยกราฟ นักคณิตศาสตร์ชาวฝรั่งเศสมี โชแซฟ ลุยส์ ลากรองจ์ (Joseph Louis  -Lagrange  ค.ศ.  1736-1813)    ปิแยร์ ซิมง เดอ ลาปลาซ (Pierre Simon de Laplace  ค.ศ. 1749-1827) ใช้แคลคูลัสสร้างทฤษฎีของกลศาสตร์ และกลศาสตร์ฟากฟ้าซึ่งเป็นพื้นฐานของวิศวกรรมศาสตร์ และดาราศาสตร์

                   สมัยปัจจุบัน

(ประมาณ พ.ศ. 2344-ปัจจุบัน) เริ่มประมาณแผ่นดินพระบาทสมเด็จพระพุทธเลิศหล้านภาลัยนักคณิตศาสตร์ ในสมัยนี้สนใจในเรื่องรากฐานของวิชาคณิตศาสตร์  และตรรกศาสตร์ (วิชาว่าด้วยการใช้เหตุผล) นำผลงานของนักคณิตศาสตร์รุ่นก่อนมาวิเคราะห์ใคร่ครวญ สิ่งใดที่นักคณิตศาสตร์รุ่นก่อนเคยกล่าวว่าเป็นจริงแล้ว นักคณิตศาสตร์รุ่นนี้ก็นำมาคิดหาทางพิสูจน์ให้เห็นจริง ทำให้ความรู้ทางคณิตศาสตร์เดิมมีพื้นฐานมั่นคง มีหลักมีเกณฑ์ที่จะอธิบายให้เข้าใจได้ว่า การคิดคำนวณต่างๆ ต้องทำเช่นนั้นเช่นนี้เพราะเหตุใด ในขณะเดียวกันก็ได้สร้างคณิตศาสตร์แขนงใหม่ๆ ให้เกิดขึ้นเพื่อนำมาใช้ให้เป็นประโยชน์ เหมาะสมกับสภาพสังคมปัจจุบัน จะขอกล่าวถึงนักคณิตศาสตร์ และแขนงใหม่ของคณิตศาสตร์ในสมัยนี้พอสังเขป

คาร์ล ฟรีดริค เกาส์ (Carl Friedrich Gauss ค.ศ. 1777-1855) นักคณิตศาสตร์ชาวเยอรมัน มีผลงานดีเด่นทางคณิตศาสตร์มากมายหลายด้าน ได้แก่ พีชคณิต การวิเคราะห์ทฤษฎีจำนวน การวิเคราะห์เชิงตัวเลข ความน่าจะเป็นและสถิติศาสตร์ รวมทั้งดาราศาสตร์และฟิสิกส์

นิโคไล อิวาโนวิช โลบาเชฟสกี (Nikolai Iwanowich Lobacheviski ค.ศ. 1792-1856) นักคณิตศาสตร์ชาวรุสเซีย และ จาโนส โบลไย (Janos Bolyai ค.ศ. 1802-1860) นักคณิตศาสตร์ชาวฮังการี ได้รับการยกย่องให้เป็นผู้ให้กำเนิดวิชาเรขาคณิตนอกระบบยูคลิดในส่วนเรขาคณิตแบบไฮเพอร์โบลิก

นีลส์ เฮนริก อาเบล (Niels Henrik Abel ค.ศ. 1802-1829) นักคณิตศาสตร์ชาวนอร์เวย์ มีผลงานในด้านพีชคณิตและการวิเคราะห์ เมื่ออายุประมาณ 19 ปี เขาพิสูจน์ได้ว่าสมการกำลังห้าที่มีตัวแปรตัวเดียวในรูปทั่วไป (ax5 + bx4 + cx3 + dx2 + ex + f = 0) จะไม่สามารถหาคำตอบโดยวิธีพีชคณิตได้เสมอไปเหมือนสมการที่มีกำลังต่ำกว่าห้า นอกจากนี้ยังมีผลงานอื่นๆ ในด้านทฤษฎีของอนุกรม อนันต์ ฟังก์ชันอดิศัย กลุ่มจตุรงค์ และฟังก์ชันเชิงวงรี

เซอร์ วิลเลียม โรแวน แฮมิลทัน (Sir William Rowan Hamilton ค.ศ. 1805-1865) นักคณิตศาสตร์ชาวไอริส มีผลงานในด้านพีชคณิต ดาราศาสตร์ และฟิสิกส์ ในปี ค.ศ. 1843 เขาได้สร้างจำนวนชนิดใหม่ขึ้นเรียกว่า ควอเทอร์เนียน เป็นจำนวนที่เขียนได้ในรูป a + bi + cj + dk โดยที่ a, b, c และ d เป็นจำนวนจริง i2 = j2 = k2 = ijk  = -1ควอเทอร์เนียน มีคุณสมบัติต่างไปจากจำนวนธรรมดาสามัญ กล่าวคือไม่มีสมบัติการสลับที่ เมื่อพูดถึงจำนวน เรามักจะคิดว่า  จำนวนตัวหน้าคูณจำนวนตัวหลัง จะได้ผลลัพธ์เท่ากับจำนวนตัวหลังคูณจำนวนตัวหน้า เขียนได้ในรูป ab = ba แต่ควอเทอร์เนียนไม่เป็นเช่นนั้น ij = k แต่ ji = -k แสดงว่า ij ji แฮมิลทันได้รับเกียรติว่าเป็นผู้ให้กำเนิดวิชาเมตริกร่วมกับ เจมส์ โจเซฟ ซิลเวสเทอร์ (James Joseph Sylvester  ค.ศ. 1814-1897) และอาร์เทอร์ เคเลย์ (Arthur Cayley  ค.ศ. 1821-1895) ทั้งสองท่านนี้เป็นนักคณิตศาสตร์ชาวอังกฤษ

แบร์นฮาร์ด รีมันน์ (Bernhard Riemann ค.ศ. 1826-1866) นักคณิตศาสตร์ชาวเยอรมัน มีผลงานในด้านเรขา คณิต ทฤษฎีของฟังก์ชันวิเคราะห์ที่มีตัวแปรเป็นจำนวนเชิงซ้อน ทฤษฎีจำนวน ทฤษฎีศักย์ โทโปโลยี และวิชาฟิสิกส์เชิงคณิตศาสตร์ เป็นผู้ให้กำเนิดวิชาเรขาคณิตแบบรีมันน์ ซึ่งเป็นรากฐานของทฤษฎีสัมพันธภาพสมัยปัจจุบัน

คาร์ล ไวแยร์สตราสส์ (Karl Weierstrass ค.ศ. 1815-1897) นักคณิตศาสตร์ชาวเยอรมัน มีผลงานในด้านการวิเคราะห์ เป็นผู้นิยามฟังก์ชันวิเคราะห์ที่มีตัวแปรเป็นจำนวนเชิงซ้อนโดยใช้อนุกรมกำลัง สร้างทฤษฎีเกี่ยวกับฟังก์ชันเชิงวงรี  และแคลลูลัสของการแปรผัน

จอร์จ บลู (George Boole ค.ศ. 1815-1864) นักคณิตศาสตร์ชาวอังกฤษมีผลงานในด้านตรรกศาสตร์ พีชคณิต การวิเคราะห์ แคลลูลัสของการแปรผัน ทฤษฎีความน่าจะเป็น เป็นผู้ให้กำเนิดวิชาพีชคณิตแบบบูล

เกออร์จ คันเตอร์ (Georg Cantor  ค.ศ. 1845-1917) นักคณิตศาสตร์ชาวเยอรมันเป็นผู้ริเริ่มนำเซตมาใช้ในการอธิบายเรื่องราวทางคณิตศาสตร์ และได้รับผลสำเร็จเป็นอย่างดี เป็นผู้ให้กำเนิดวิชาทฤษฎีเซต ความรู้เกี่ยวกับเซตทำให้เราทราบเรื่องราวเกี่ยวกับจำนวนจริงและจำนวนอนันต์เพิ่มขึ้น ต่อมานักคณิตศาสตร์อีกหลายท่านได้ช่วยกันปรับปรุงเรื่องเซตให้สมบูรณ์จนเป็นที่ยอมรับและนำไปใช้อย่างกว้างขวางในวิชาคณิตศาสตร์

โยเชียห์ วิลลาร์ด กิบส์ (Josiah Willard Gibbs) นักคณิตศาสตร์ชาวอเมริกันมีผลงานในด้านวิชาฟิสิกส์เชิงคณิตศาสตร์ และวิชากลศาสตร์เชิงสถิติ เป็นผู้ให้กำเนิดวิชาเวกเตอร์วิเคราะห์

อัลเบิร์ต ไอน์สไตน์ (Albert Einstein ค.ศ. 1879-1955) นักฟิสิกส์ชาวเยอรมัน ใช้คณิตศาสตร์สร้างทฤษฎีสัมพันธภาพ เป็นเหตุให้ความคิดเห็นเกี่ยวกับเอกภพและสสารซึ่งเชื่อกันมาแต่เดิมเปลี่ยนแปลงไป ทฤษฎีทางวิทยาศาสตร์สมัยปัจจุบัน เช่น แขนงอิเล็กทรอนิกส์  ฟิสิกส์นิวเคลียร์และอวกาศ  ต้องใช้ความรู้ทางคณิตศาสตร์ประยุกต์แบบใหม่

จอห์น ฟอน นอยมันน์  (John Von Neumann ค.ศ. 1903-1957) นักคณิตศาสตร์ชาวฮังการี มีผลงานทั้งในด้านคณิตศาสตร์บริสุทธิ์ คณิตศาสตร์ประยุกต์และเศรษฐศาสตร์ เช่น ทฤษฎีควอนตัม ทฤษฎีคอมพิวเตอร์และการออกแบบคอมพิวเตอร์ กำหนดการเชิงเส้น กลุ่มจตุรงค์ต่อเนื่อง ตรรกศาสตร์ ความน่าจะเป็น เป็นผู้ให้กำเนิดทฤษฎีการเสี่ยง

คณิตศาสตร์แขนงใหม่ที่เกิดขึ้นในสมัยปัจจุบันได้แก่ทฤษฎีเซต กำเนิดเมื่อ พ.ศ. 2435 โทโพโลยี กำเนิดเมื่อ
พ.ศ. 2438 ทฤษฎีการเสี่ยง กำเนิดเมื่อ พ.ศ. 2474 และกำหนดการเชิงเส้น กำเนิดเมื่อ พ.ศ. 2490

คณิตศาสตร์เริ่มจากเป็นเกร็ดความรู้ที่มนุษย์นำมาใช้ให้เป็นประโยชน์ในการดำรงชีวิตในสมัยสี่พันปีก่อนค่อยๆ มีกฎเกณฑ์ทวีเพิ่มพูนขึ้นตลอดมา คณิตศาสตร์เปรียบเหมือนต้นไม้ นับวันจะผลิดอกออกผลนำประโยชน์มาให้มนุษยชาติ มนุษย์ทุกยุคทุกสมัยสนใจวิชาคณิตศาสตร์ การให้ความรู้ทางคณิตศาสตร์แก่เยาวชนของชาติ  จึงมีความสำคัญอย่างมาก

ส่วนเบี่ยงเบนมาตรฐาน

ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation : S.D.,S,s)

ส่วนเบี่ยงเบนมาตรฐานเป็นค่าวัดการกระจายที่สำคัญทางสถิติ เพราะเป็นค่าที่ใช้บอกถึงการกระจายของข้อมูลได้ดีกว่าค่าพิสัย และค่าส่วนเบี่ยงเบนเฉลี่ย

การหาส่วนเบี่ยงเบนมาตรฐานสามารถหาได้ 2 วิธี

1.การหาส่วนเบี่ยงเบนมาตรฐาน(S.D.) ในกรณีข้อมูลไม่ได้มีการแจกแจงความถี่
สามารถหาได้จากสูตร

สุตรที่ 1      หรือ

สูตรที่ 2    

เมื่อ   S.D. คือ ส่วนเบี่ยงเบนมาตรฐาน

 คือ ข้อมูล ( ตัวที่ 1,2,3…,n)
 คือ ค่าเฉลี่ยเลขคณิต
 คือ จำนวนข้อมูลทั้งหมด
หมายเหตุ ในกรณีที่ เป็นทศนิยมทำให้เกิดความยุ่งยากในการคำนวณ จึงควรเลือกใช้สูตรที่ 2

1.จากข้อมูลต่อไปนี้จงหาส่วนเบี่ยงเบนมาตรฐาน 1, 2, 4, 6, 8, 9

วิธีทำ

ใช้สูตรที่ 2    
หาค่า  = 
 = 1 + 4 + 16 + 36 + 64 + 91
 = 212
หาค่า  = 1 + 2 + 4 + 6 + 8 + 9
 = 30
 = 302
 = 900
 = 6
แทนค่าในสูตร 


S.D. = 3.52

2.การหาส่วนเบี่ยงเบนมาตรฐาน(S.D.) ในกรณีข้อมูลมีการแจกแจงความถี่
สามารถหาได้จากสูตร
1. 
หรือ 2. 

S.D. คือ ส่วนเบี่ยงเบนมาตรฐาน
 คือ ความถี่
 คือ จุดกึ่งกลางชั้น
 คือ ค่าเฉลี่ยเลขคณิต
 คือ จำนวนข้อมูล
2.จากตารางข้อมูลต่อไปนี้จงหาส่วนเบี่ยงเบนมาตรฐาน

คะแนน ความถี่( )
5-9 3
10-14 6
15-19 7
20-24 8
25-29 10
30-34 12
35-39 14

วิธีทำ ใช้สูตรที่ 2

สร้างตารางแจกแจงความถี่

คะแนน
5-9 3 7 49 21 147
10-14 6 12 144 72 864
15-19 7 17 289 119 2023
20-24 8 22 484 176 3872
25-29 10 27 729 270 7290
30-34 12 32 1024 384 12288
35-39 14 37 1369 148 19166
. = 60 . . = 1190  = 45650

1. หาค่าเฉลี่ยเลขคณิต จากสูตร  = 

= 19.83

2.หาส่วนเบี่ยงเบนมาตรฐาน จากสูตร        


= 8.79
ส่่วนเบี่ยงเบนมาตรฐาน คือ 8.79

* หมายเหตุ* ความแปรปรวน หาได้จาก (S.D)2

การวัดค่ากลางของข้อมูล

การวัดค่ากลางของข้อมูล

การหาค่ากลางของข้อมูลที่เป็นตัวแทนของข้อมูลทั้งหมดเพื่อความสะดวกในการสรุปเรื่องราวเกี่ยวกับข้อมูลนั้นๆ จะช่วยทำให้เกิดการวิเคราะห์ข้อมูลถูกต้องดีขึ้น การหาค่ากลางของข้อมูลมีวิธีหาหลายวิธี แต่ละวิธีมีข้อดีและข้อเสีย และมีความเหมาะสมในการนำไปใช้ไม่เหมือนกัน ขึ้นอยู่กับลักษณะข้อมูลและวัตถุประสงค์ของผู้ใช้ข้อมูลนั้นๆ

ค่ากลางของข้อมูลที่สำคัญ มี 3 ชนิด คือ

1.        ค่าเฉลี่ยเลขคณิต (Arithmetic mean)

2.       มัธยฐาน (Median)

3.       ฐานนิยม (Mode)

 1.   ค่าเฉลี่ยเลขคณิต (Arithmetic mean)
ใช้สัญลักษณ์ คือ   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/x.JPG

1.1 การหาค่าเฉลี่ยเลขคณิตของข้อมูลที่ไม่แจกแจงความถี่

ให้ x 1 , x 2 , x 3 , …, x N เป็นข้อมูล N ค่า

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/21.JPG

ตัวอย่าง จากการสอบถามอายุของนักเรียนกลุ่มหนึ่งเป็นดังนี้ 14 , 16 , 14 , 17 , 16 , 14 , 18 , 17

1) จงหาค่าเฉลี่ยเลขคณิตของอายุนักเรียนกลุ่มนี้

2) ถ้ามีนักเรียนมาเพิ่มอีก 1 คน และมีอายุเป็น 17 ปี ค่าเฉลี่ยเลขคณิตเป็นเท่าใด

3) เมื่อ 3 ปีที่แล้ว ค่าเฉลี่ยเลขคณิตของอายุนักเรียนกลุ่มนี้เป็นเท่าใด

1) วิธีทำ

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/22.JPGhttp://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/23.JPG

ค่าเฉลี่ยเลขคณิตของนักเรียนกลุ่มนี้ คือ 15.75 ปี

2) วิธีทำ
     เดิมมีนักเรียน 8 คน แต่มีนักเรียนเพิ่มใหม่อีก 1 คน รวมมีนักเรียน 9 คน

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/24.JPG

ค่าเฉลี่ยเลขคณิต คือ 15.89 ปี

3) วิธีทำ
เมื่อ 3 ปีที่แล้ว 11 13 11 14 13 11 15 14
อายุปัจจุบัน 14 16 14 17 16 14 18 17

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/25.JPG
เมื่อ 3 ปีที่แล้ว ค่าเฉลี่ยเลขคณิตของอายุของนักเรียนกลุ่มนี้ คือ 12.75 ปี

1.2 ค่าเฉลี่ยเลขคณิตของข้อมูลที่แจกแจงความถี่

ถ้า f 1 , f 2 , f 3 , … , f k เป็นความถี่ของค่าจากการสังเกต x 1 , x 2 , x 3 ,…. , x k

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/26.JPG

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/27.JPG

ตัวอย่าง จากตารางแจกแจงความถี่ของคะแนนสอบของนักเรียน 40 คน ดังนี้ จงหาค่าเฉลี่ยเลขคณิต

คะแนน จำนวนนักเรียน (f 1) x 1 f 1x 1
11 – 12

21 – 30

31 – 40

41 – 50

51 – 60

7

6

8

15

4

15.5

25.5

35.5

45.5

55.5

108.5

153

284

682.5

222

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/28.JPG   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/29.JPG

วิธีทำ

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/x.JPG  =   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/30.JPG

            =   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/31.JPG

            =   34

    ค่าเฉลี่ยเลขคณิต = 34

สมบัติที่สำคัญของค่าเฉลี่ยเลขคณิต

1. http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/32.JPG                    = http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/33.JPG

2. http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/34.JPG        = 0

3. http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/35.JPG น้อยที่สุด  เมื่อ M = http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/x.JPG   หรือ    http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/36.JPGhttp://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/37.JPGhttp://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/38.JPG

เมื่อ M เป็นจำนวนจริงใดๆ

4. http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/39.JPG

5. ถ้า y 1 = a xi + b , I = 1, 2, 3, ……., N เมื่อ a , b เป็นค่าคงตัวใดๆแล้ว

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/40.JPG = a http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/x.JPG + b

ค่าเฉลี่ยเลขคณิตรวม ( Combined Mean )

ถ้า http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/41.JPG เป็นค่าเฉลี่ยเลขคณิตของข้อมูลชุดที่ 1 , 2 , … , k ตามลำดับ

ถ้า N 1 , N 2 , … , N k เป็นจำนวนค่าจากการสังเกตในข้อมูลชุดที่ 1 , 2 ,… , k ตามลำดับ

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/42.JPG    =  http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/43.JPG
 ตัวอย่าง ในการสอบวิชาสถิติของนักเรียนโรงเรียนปราณีวิทยา ปรากฏว่านักเรียนชั้น ม.6/1 จำนวน 40 คน ได้ค่าเฉลี่ยเลขคณิตของคะแนนสอบเท่ากับ 70 คะแนน นักเรียนชั้น ม.6/2 จำนวน 35 คน ได้ค่าเฉลี่ยเลขคณิตของคะแนนสอบเท่ากับ 68 คะแนน นักเรียนชั้น ม.6/3 จำนวน 38 คน ได้ค่าเฉลี่ยเลขคณิตของคะแนนสอบเท่ากับ 72 คะแนน จงหาค่าเฉลี่ยเลขคณิตของคะแนนสอบของนักเรียนทั้ง 3 ห้องรวมกัน

วิธีทำhttp://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/x.JPG รวม   =    http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/44.JPG

=     http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/45.JPG

=  70.05

2 .  มัธยฐาน (Median)
 ใช้สัญลักษณ์ Med คือ ค่าที่มีตำแหน่งอยู่กึ่งกลางของข้อมูลทั้งหมด เมื่อได้เรียงข้อมูลตามลำดับ ไม่ว่าจากน้อยไปมาก หรือจากมากไปน้อย

   การหามัธยฐานของข้อมูลที่ไม่ได้แจกแจงความถี่
หลักการคิด
 1 ) เรียงข้อมูลที่มีอยู่ทั้งหมดจากน้อยไปมาก หรือมากไปน้อยก็ได้
2) ตำแหน่งมัธยฐาน คือ ตำแหน่งกึ่งกลางข้อมูล ดังนั้นตำแหน่งของมัธยฐาน = http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/46.JPG

เมื่อ N คือ จำนวนข้อมูลทั้งหมด

3) มัธยฐาน คือ ค่าที่มีตำแหน่งอยู่กึ่งกลางของข้อมูลทั้งหมด

 ข้อควรสนใจ
1. เนื่องจากตำแหน่งกึ่งกลางเป็นตำแหน่งที่เราจะหามัธยฐาน ดังนั้น เราจะเรียกตำแหน่งนี้ว่า ตำแหน่งของมัธยฐาน
2. เราไม่สามารถหาตำแหน่งกึ่งกลางโดยวิธีการตามตัวอย่างข้างต้น เพราะต้องเสีย เวลาในการนำค่าจากการสังเกตมาเขียนเรียงกัน        ทีละตำแหน่ง ดังนั้น เราจะใช้วิธีการคำนวณหา โดยสังเกตดังนี้
ตำแหน่งมัธยฐาน = http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/52.JPG
3. ในการหามัธยฐาน ความสำคัญอยู่ที่ นักเรียนต้องหาตำแหน่งของมัธยฐานให้ได้ เสียก่อนแล้วจึงไปหาค่าของข้อมูล ณ ตำแหน่งนั้น

ตัวอย่าง กำหนดให้ค่าจากการสังเกตในข้อมูลชุดหนึ่ง มีดังนี้
5, 9, 16, 15, 2, 6, 1, 4, 3, 4, 12, 20, 14, 10, 9, 8, 6, 4, 5, 13
จงหามัธยฐาน

วิธีทำ เรียงข้อมูล 1 , 2 , 3 , 4 , 4 , 4 , 5 , 5 , 6 , 6 , 8 , 9 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 20

ตำแหน่งมัธยฐาน        = http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/52.JPG

=     http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/53.JPG

= 10.5

ค่ามัธยฐาน   =   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/54.JPG   = 7

การหามัธยฐานของข้อมูลที่จัดเป็นอันตรภาคชั้น
   ขั้นตอนในการหามัธยฐานมีดังนี้
(1)     สร้างตารางความถี่สะสม
(2)หาตำแหน่งของมัธยฐาน คือ http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/55.JPG

เมื่อ N เป็นจำนวนของข้อมูลทั้งหมด
(3) ถ้า   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/55.JPG เท่ากับความถี่สะสมของอันตรภาคชั้นใด อันตรภาคชั้นนั้นเป็นชั้น มัธยฐาน และมีมัธยฐานเท่ากับขอบบน

ของอันตรภาคชั้นนั้น ถ้า http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/55.JPG ไม่เท่าความถี่สะสมของอันตรภาคชั้นใดเลย อันตรภาคชั้นแรกที่มีความถี่สะสมมากกว่า   http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/55.JPG

เป็นชั้นของมัธยฐาน และหามัธยฐานได้จากการเทียบบัญญัติไตรยางค์ หรือใช้สูตรดังนี้
จากข้อมูลทั้งหมด N จำนวน ตำแหน่งของมัธยฐานอยู่ที่ http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/55.JPG

Med = http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/56.JPG

เมื่อ L คือ ขอบล่างของอันตรภาคชั้นที่มีมัธยฐานอยู่

http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/57.JPG     คือ ผลรวมของความถี่ของทุกอันตรภาคชั้นที่มีมัธยฐานอยู่

f M คือ ความถี่ของชั้นที่มีมัธยฐานอยู่

I คือ ความกว้างของอันตรภาคชั้นที่มีมัธยฐานอยู่

N คือ จำนวนข้อมูลทั้งหมด

ตารางที่มีชั้นแบบเปิด จะหา http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/x.JPG ไม่ได้ แต่หามัธยฐานและฐานนิยมได้ ถ้าตำแหน่ง
เท่ากับความถี่สะสม ( หรือเป็นตัวสุดท้ายของชั้น ) ให้ตอบขอบบนของชั้นนั้น

3.  ฐานนิยม (Mode)

  การหาฐานนิยมของข้อมูลที่ไม่แจกแจงความถี่
หลักการคิด
- ให้ดูว่าข้อมูลใดในข้อมูลที่มีอยู่ทั้งหมด มีการซ้ำกันมากที่สุด( ความถี่สูงสุด) ข้อมูลนั้นเป็นฐานนิยมของข้อมูลชุดนั้น
 หมายเหตุ
– ฐานอาจจะไม่มี หรือ มีมากกว่า 1 ค่าก็ได้

 สิ่งที่ต้องรู้
1. ถ้าข้อมูลแต่ละค่าที่แตกต่างกัน มีความถี่เท่ากันหมด เช่น ข้อมูลที่ประกอบด้วย 2 , 7 , 9 , 11 , 13 จะพบว่า แต่ละค่าของข้อมูลที่แตกต่างกัน จะมีความถี่เท่ากับ 1 เหมือนกันหมด ในที่นี้แสดงว่า ไม่นิยมค่าของข้อมูลตัวใดตัวหนึ่งเป็นพิเศษ  ดังนั้น เราถือว่า ข้อมูลในลักษณะดังกล่าวนี้ ไม่มีฐานนิยม
  2. ถ้าข้อมูลแต่ละค่าที่แตกต่างกัน มีความถี่สูงสุดเท่ากัน 2 ค่า เช่น ข้อมูลที่ ประกอบด้วย 2, 4, 4, 7, 7, 9, 8, 5 จะพบว่า 4 และ 7 เป็นข้อมูลที่มีความถี่สูงสุดเท่ากับ 2 เท่ากัน ในลักษณะเช่นนี้ เราถือว่า ข้อมูลดังกล่าวมีฐานนิยม 2 ค่า คือ 4 และ 7
3. จากข้อ 1, 2, และตัวอย่าง แสดงว่า ฐานนิยมของข้อมูล อาจจะมีหรือไม่มีก็ได้ ถ้ามีอาจจะมีมากกว่า 1 ค่าก็ได้

การหาฐานนิยมของข้อมูลที่มีการแจกแจงเป็นอันตรภาคชั้น
   การประมาณอย่างคร่าวๆ

   ฐานนิยม คือ จุดกึ่งกลางชั้นที่มีความถี่สูงสุด

   ตัวอย่าง จากตารางแจกแจงความถี่ต่อไปนี้ จงหาฐานนิยมโดยประมาณอย่างคร่าวๆ

คะแนน ความถี่
20-29

30-39

40-49

50-59

60-69

2

10

15

13

5

อันตรภาคชั้นที่มีความถี่สูงสุด คือ 40-49

จุดกลางชั้น คือ http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/58.JPG

ดังนั้น ฐานนิยมโดยประมาณ คือ 44.5

คุณสมบัติที่สำคัญของฐานนิยม
1.     ฐานนิยมสามารถหาได้จากเส้นโค้งของความถี่ และฮิสโทแกรม
2.    ในข้อมูลแต่ละชุด อาจจะมีฐานนิยมหรือไม่มีก็ได้ ถ้ามี อาจจะมีเพียงค่าเดียว หรือหลายค่าก็ได้
3.   ให้ X 1, X 2, X 3, ….., X N เป็นข้อมูลชุดหนึ่งที่มีฐานนิยมเท่ากับ Mo
ถ้า k เป็นค่าคงตัว จะได้ว่า X 1+k, X 2+k, X 3+k, …., X N+k เป็นข้อมูลที่มีฐานนิยมเท่ากับ Mo + k
4.   ให้ X 1, X 2, X 3, …., X N เป็นข้อมูลชุดหนึ่งที่มีฐานนิยมเท่ากับ Mo
ถ้า k เป็นค่าคงตัว ซึ่ง k =/= 0 จะได้ว่า kX 1, kX 2, kX 3, …, kX N จะเป็นข้อมูลที่มีฐานนิยมเท่ากับ kMo
 คุณสมบัติข้อที่ 3 และ 4 ก็เช่นเดียวกับค่าเฉลี่ยเลขคณิต และมัธยฐาน กล่าวคือ ถ้านำค่าคงตัวไปบวก หรือคูณกับค่าจากการสังเกตทุกตัวในข้อมูลชุดหนึ่ง ฐานนิยมของข้อมูลชุดใหม่นี้ จะเท่ากับ ฐานนิยมของข้อมูลชุดเดิม บวกหรือคูณกับค่าคงตัวดังกล่าว ตามลำดับ ( อย่าลืม ! ถ้าเป็นการคูณ ค่าคงตัวที่นำไปคูณไม่เท่ากับศูนย์)

 

การแจกแจงความถี่สะสม

การแจกแจงความถี่สะสม
ความถี่สะสม ( Commulative Frequency ) ของค่าที่เป็นไปได้ค่าใดหรืออันตรภาคชั้นใด หมายถึง ผลรวมของความถี่ของค่านั้นหรืออันตรภาคชั้นนั้น กับความถี่ของค่าหรือของอันตรภาคชั้นที่มีช่วงคะแนนต่ำกว่าทั้งหมด หรือสูงกว่าทั้งหมดอย่างใดอย่างหนึ่ง ( นิยมใช้ความถี่สะสมแบบต่ำกว่า)

อันตรภาคชั้น คามถี่                          ความถี่สะสม
ความถี่สะสมแบบต่ำกว่า ความถี่สะสมแบบสูงกว่า
10 – 14

15 – 19

20 – 24

25 – 29

30 – 34

2

3

10

4

1

2

5

15

19

20

20

18

15

5

1

 การแจกแจงความถี่สัมพัทธ์และความถี่สะสมสัมพัทธ์
ความถี่สะสมสัมพัทธ์ของอันตรภาคชั้นใด คือ อัตราส่วนระหว่างความถี่สะสมของ
อันตรภาคชั้นนั้นกับทั้งหมด ซึ่งอาจแสดงในรูปเศษส่วน ทศนิยม หรือร้อยละ

อันตรภาคชั้น ความถี่ ความถี่สัมพัทธ์ ร้อยละของความถี่สัมพัทธ์ ความถี่สะสม ความถี่สะสมสัมพัทธ์
50 – 59 2 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/10.JPG 4 2 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/15.JPG
60 – 69 11 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/11.JPG 22 13 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/16.JPG
70 – 79 20 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/12.JPG 40 33 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/17.JPG
80 – 89 14 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/13.JPG 28 47 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/18.JPG
90 – 99 3 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/14.JPG 6 50 http://www.thaigoodview.com/library/teachershow/bangkok/pisamorn_s/pictures/19.JPG

  หมายเหตุ กรณีที่ข้อมูลไม่จัดเป็นอันตรภาคชั้นสามารถใช้วิธีเดียวกันนี้ได้